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Improved collocation methods for thermal 
regenerator simulations 

A. J. WILLMOTT and D. P. KNIGHT 
Department of Computer Science. University of York. York YOI 5DD. U.K. 

Abstract-Robust and accurate collocation schemes are offered for the series solution of the classical 
Nusselt integral equations which describe the steady state temperature behaviour ofa thermal regenerator. 
An explanation is provided of why the collocation and Galerkin series expansion methods are robust for 
the long regenerator problem. whereas the quadrature methods arc not. A novel, economical method is 

provided for series expansion techniques for the non-symmetric case. 

1. INTRODUCTION 

THIS PAPER is concerned with the numerical solution 
of the integral equation 

s : F(A-<)+e.“F(<)+ K(t-E)F(E)dE = 1 (I) 
0 

and the pair of simultaneous integral equations 

s 
A’ F’(<‘) = c “‘F(y) + K’(E-<‘)F(E)dE (2) 

c 

(I -F(t)) = e-“(I -F’(z)) + (3) 

The lcertzel of these integral equations is defined by 

K(x) = 
-iJ,(2i(.rIT)“‘)I-Ie -,,-n 

(Xl-I) ‘,? (4) 

where iJ,(ijl) is a real valued function with complex 
argument iJ*, where i’ = - I and J, is the Bessel func- 
tion of the first type and of first order. Iliffe [I] offered 
a similar set of integral equations, developed from 
those devised by Nusselt [2, 31. 

These equations describe the relationship between 
the spatial solid temperature distribution, F(t), for 
0 < < < A, at the end of the her period of thermal 
regenerator operation and the corresponding dis- 
tribution F’(l’), for 0 < 5’ < A’, for the end of the 
cold period. 

On the dimensionless scales introduced by Hausen 
[4] in 1929, the length of the regenerator in the hot 

t In IlilTe’s paper [I]. for example, the equation is written 
with the gas entering at <’ = 0 and leaving at i’ = A’. 

period is A and in the cold period. A’. These par- 
ameters were called the r&c& I~I~~I/I by Hausen. 
The dimensionless duration of each period is given by 
the reduced period, lI. for the hot period and n’ for 
the cold. 

Equations (2) and (3) deal with the general non- 
symmetric case where A # A’ and/or n # ll’. Note 
that equation (2) assumes that gas flows through the 
packing in the cold period, entering the regenerator 
at <’ = A’ and departing at position <’ = 0.t 

Equation (I) exploits the symmetry of the case 
where A = A’ and n = Il’ for which it can bc shown 
that 

F’(A-<)+F(;) = I. (5) 

These integral equations are Volterra equations of 
the second kind. Baker [5] recalls that the numerical 
techniques most favoured for such equations fall into 
two classes. In the series espumion methods. with 
which we are concerned here. we seek to represent 
F(z) and F’(t’) by 

and 

05) = c s(,4,(5, (6) ,= ,I 

F’(T) = c ll,4,(5’). (7) 
,=” 

In the quadrature methods. such as that of Iliffe [I], 
the integral in equation (I ), for example, 

s 

5 

K(< --E)F(E) dc 
0 

is approximated by one of the Newton-Coles methods 
(see Baker [5] or Delves and Mohamed [6]) and the 
solution of the integral equations consists of the vec- 
tors F and F’ where F = [F,,, F,, F2,. . . , F,,IT and 
F’ = [Fb, F’,, F>, . ., F;,]’ and the F;s are tem- 
peratures at the entrance and exit to the regenerator, 
and at equally spaced, intermediate positions. On the 
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NOMENCLATURE 

F. F dimensionless temperature distribution A reduced length of the regenerator 
at the end of the hot period < dimensionless distance from the hot gas 

K kernel of the integral equations defined entrance 
by formula (4) n reduced period of regenerator operation 

R residual function defined by equation 4, function of degree j 
(12) L-2 function defined by equation (I I). 

T, Chebyshev polynomial of degree X-. 
Superscripts 

Greek symbols refers to the end of the cold period 
‘Y,. /j, coefficients in expansions (6) and (7) (PI refers to the pth cycle. 

other hand. the scrics expansion solution consists of 
vectors a and /J where a = [z,,, ZX,, LX?, _. z,>j’ and 

2. THERMAL REGENERATOR OPERATION 
AND ITS MODELLING 

B = [PO. PI. p:. ., /Ll~‘. 
The series expansions (6) and (7) embody a set of 

linear(v independenr functions (&~,(<)]j = 0. I, 2. . , II}. 
Without loss of generality, substitution of expan- 
sion (6) into equation (I) yields 

+ s: ’ K(E--E)+,(s)dE = I. (8) 
0 

In the collocation method, WC apply equation (8) at 
,I+ I di.v/irzc/ but not necessarily equally spaced pos- 
itions {<,I; = 0, I, 2, ., n) yielding the matrix 
equation 

Aa = e. 

The matrix A = [a,,,] is defined by 

(9) 

(‘I,. , = cb,(A--<,)+e “C/J,(&)+ 

andthevectore=[l. I ,..., I]‘. 
In this paper, we suggest another set of functions 

(4,(<,l.i = 0, I. t., 111, to those proposed previously 
and introduce a novel method for handling the general 
case represented by equations (2) and (3). In so doing, 
WC introduce significant economies which can be 
achieved in the solution of the non-symmetric 
problem. We also address two other issues. Why does 
the lliffe [I] method break down, in the manner 
described by Willmott and Thomas [7] whereas this 
collocation method. and other series expansion tech- 
niques, do not, once certain precautions are taken in 
the calculation of the matrix elements n,,,? How can 
economies be made in the number of terms in the 
series expansion required to represent regenerator 
behaviour accurately? In addressing this problem, we 
include a look at the choice of the possible data points 
which might be used. 

Waste thermal energy is extracted from a hot gas 
as it passes through a relatively cool, porous packing 
with thermal capacitance for the duration of the hof 
period. This heat is recovered by a cold gas which 
flows through the same packing in the contra-flow 
direction during the coldpeviod. This alternate heating 
and cooling of the packing imposes forced oscillations 
of temperature upon it, which become periodic after 
a sufficient number ofcycles. A cycle consists of a cold 
period followed by a hot period. This periodic state is 
known as c~~clic equilibrium and it is this condition to 
which equations (l)-(3) refer. 

Equation (2). therefore, represents the cooling of 
the packing at cyclic equilibrium from an initial tem- 
perature distribution, F(<‘) to a distribution at the 
end of the cold period equal to F’(5’). Similarly, equa- 
tion (3) represents a hot period of operation. For the 
symmetric case we need only consider a cold period 
and use the symmetry conditions which apply at cyclic 
equilibrium, as contained in equation (5), thus yield- 
ing equation (I). 

These equations are based on the linear model in 
which it is assumed that, in a given period of 
operation, the thermophysical properties of the gas 
and the solid packing, together with the heat transfer 
coefficients are constant and do not vary spatially or 
chronologically. Equally, it is assumed that the inlet 
temperature and flow rate of the gas do not vary with 
time within a period, hot or cold. Clearly, for the non- 
symmetric case, we allow the descriptive parameters 
in the hot period to be different from those in the cold 
period. 

The linear model includes further a dimensionless 
temperature so that. on this scale, the hot gas enters 
at a temperature equal to I and the cold gas enters 
at temperature 0. This means that the temperature 
distributions F(t) and F’(r’) all lie on a [0, I] scale, a 
factor we exploit in our choice of linearly independent 
functions in the expansions (6) and (7). 

A further discussion of the linear model together 
with the dimensionless parameters A, A’, II and TI’ is 
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offered by Schmidt and Willmott [S] and also Hausen 
191. 

3. CHOICE OF LINEARLY INDEPENDENT 
FUNCTIONS 

Nahavandi and Weinstein [IO] first introduced the 
method of collocation to equations (l)-(3). They 
employed simple functions &(<) = <“. However, as 
Willmott and Duggan [l I] and subsequently Baclic 
[ 121 pointed out, very large matrix elements 

u,., = (A-E,)‘+em”&+ 

can arise for large values of reduced length. A. for 
modestly large values of n. the maximum degree of 
the polynomial 5’ used. These large elements can result 
in the process of solving the linear equation (9) break- 
ing down, thereby limiting the possible range of appli- 
cation of the Nahavandi and Weinstein method. 

Baclic [I21 and Hill [I31 both suggested employing 
independent functions which avoided the generation 
of such large matrix elements. Baclic put forward 
the use of &(<) = <‘/k! while Hill introduced the 
use of the Chebyshev polynomials. that is with 
&(c) = TI (25/A- I). Hill indicated that large values 
of reduced length, A, did not cause the collocation 
method to break down with this use of the Chebyshev 
polynomia1s.t By way of example. he computed suc- 
cessfully the vector a for the symmetric case with 
A = 100 and II = 5 using a polynomial of degree 20. 

In this paper, we extend the work of Hill [I31 to 
functions whose value always lies in the interval [O. I] 
occupied by the temperature distributions F(s) and 
F’({‘). In particular, we propose that the functions 

,,,,,=;{,(;-l)+l} (IO) 

be employed. Our results offered later are based on 
these functions. 

4. CHOICE OF DATA POINTS 

Parallels can be drawn between the method of col- 
location for the solution of integral equations and the 
method of interpolation for the approximation of one 
function by another. Without loss of generality, the 
symmetric case is considered and from equation (I) 
we define the function Q by 

Q(F(t)) = F(A-5)+e- “F(5) 

+ 
5; 

‘K(&s)F(E)dE-I. (II) 
0 

t The Chebyshev polynomials T,(s) can be defined by the 
recurrence 

r, + , (I) = 2sT, (s) - 7-k _ , (x) 
with T,,(X) = 1 and T,(x) = .x. 

If F(t) were an exact solution of equalion (I). then 
Cl(F(()) = 0 for 0 < < < A. In the case. however, 
where F(t) is an cslitnct[c of the exact solution. using 
the series expansion given by equation (6). we are left 
with a residual function R(t) where 

Similarly. if we seek to represent a function j’(c) by 
an approximation p,,(c) on [0, A] where p,,(<) is a 
polynomial of degree II. then we can define an error 
function e(r) equivalent to the residual function R(r). 
Here 

43 =./‘(a -/h(r). 

In both interpolation and collocation. we select dis- 
tinct data points {&Ii = 0, I, 2, _, II) and require that 
e(f) = 0 and R(t) = 0 at these /I+ I positions. No 
attempt is made to minimise le(<)l or lR(<)/ at pos- 
itions < on the interval [O. A] other that at {;,li = 0. I. 
2. . . ..n). 

On the other hand. for interpolation. there is a well 
known theorem (see Morris [l4], Atkinson [I 51 or 
Schwarz [ 161) which specifies that the maximum value 
of je({)/ on [O. A] is minimized if we select the data 
points (<, Ii = 0, I. 2. . . n) to be the zeros of 
the Chebyshev polynomial r,,, ,(s) mapped from the 
[ - I, I] scale onto the [0, A] interval. These zeros take 
the form 

for i = 0, I, 2, , tz. The theorem relies upon the 
function f(t) and the interpolating function p,!(t) 
both being polynomials, ,f‘ of degree tz+ I and p,, of 
degree. at most n. The presence of the kernel K(< - E) 
in the integral equation precludes these assumptions. 
No guarantee can be given, therefore, that [R(t)1 will 
be minimised on [0, A] if the same zeros of T,,, ,(s) 
be used as data points in setting up the matrix equa- 
tion (9) although some improvement over using 
equally spaced data points should be expected. 

It turns out, however, that from physical con- 
siderations, it is useful to employ these Cheh~+r clurrr 
poinfs since they are relatively closely spaced around 
the ends of the [O. A] interval which correspond to the 
entrances of the hot and cold gases to the regenerator. 
Hausen [17] pointed out that while the temperature 
distribution F(t) was, in general, linear in the middle 
of the regenerator, most of the non-linearities are 
propagated from the regenerator entrances as a conse- 
quence of the inlet gas temperatures not varying with 
time in each period of regenerator operation. The 
result is that use of the Chebyshev data points enables 
these non-linearities to be more easily represented by 
the series expansion (6). Willmott and Duggan [I I] 
explored this possibility and found that, indeed, mod- 
est but not dramatic economies could be made in the 
number of terms required in the series expansion (they 
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Table I. Values of the thermal ratio. 11 RtG. and the number. N. of data points necessary to realise four-figure 
accuracy. as a l’unction of reduced period, n and reduced length. A. The values in the columns (a) were evaluated 
with (Y/M//F .vpu~~et/ collocation points; those in the columns (b) relate to the Chchwher collocation points. 

(Symmetric case.) 

0.1 I .o 5.0 
n (a) (b) (a) (b) (a) (b) 

A ‘Inro N ~lRl:li N ‘IRK: N ‘lREG N ‘IRE0 N UREG N 

I 0.3332 3 0.3332 3 0.3221 4 0.3221 4 0.1877 3 0.1877 3 
IO 0.8333 4 0.8333 4 0.8322 IO 0.x322 8 0.8086 8 0.8086 
25 0.9259 8 0.9259 6 0.9257 I4 0.9257 IO 0.9214 I2 0.9214 I:, 
50 0.9615 8 0.9615 8 0.9614 22 0.9614 I4 0.9604 22 0.9604 I3 
80 0.9756 IO 0.9756 IO 0.9753 28 0.9753 I6 0.9751 30 0.9751 I6 

examined the Nahavandi and Weinstein [IO] linearly 
independent functions) for an accurate solution of the 
integral equations, certainly as far as long regen- 
erators are concerned. that is where A/n > IO and 
A > IO. 

We have confirmed these observations and our 
results arc shown in Table I. It turns out, however, 
that for large reduced length, A, and ir~ecrsir~,y 
reduced period, n. very significant economies can be 
effected using the Chcbyshev data points. For 
example, with A = 80 and n = 5, 30 equally spaced 
data points are required to achieve four-figure accu- 
racy whereas only 16 Chcbyshev collocation points 
are needed. This reflects the increased propagation of 

Table 2. Values of the thermal ratio. qKEG. and the number, 
N. of Chebyshev points of collocation necessary to achieve 
four-figure accuracy for values A and A/n. where A is the 
reduced length and n is the reduced period. (Symmetric 

case.) 

A/n 50 20 IO 

A ‘IKCU N ‘1REC N ‘1 KEG N 

I.0 0.3333 3 0.3333 3 0.3332 2 
3.0 0.6000 3 0.5999 3 0.5994 3 
5.0 0.7142 3 0.7141 4 0.7134 4 
7.0 0.7777 4 0.7775 3 0.7768 5 
8.0 0.8000 4 0.7997 5 0.7989 6 

IO.0 0.8333 4 0.8330 6 0.8322 6 

12.0 0.8571 4 0.8568 
16.0 0.8888 6 0.8886 

20.0 0.9090 6 0.9087 
25.0 0.9259 8 0.9256 
30.0 0.9374 8 0.937 I 
40.0 0.9523 IO 0.9520 
50.0 0.9614 IO 0.96 I2 

100.0 
300.0 
500.0 
800.0 

1000.0 
2000.0 

0.9803 
0.9935 
0.9960 
0.9974 
0.9980 
0.9989 

22 
21 
28 
33 

I4 
I7 

0.9802 
0.9933 
0.9958 
0.9975 
0.998 I 
0.9991 

6 0.8559 7 
7 0.8876 8 
8 0.9078 8 
8 0.9246 8 
9 0.9362 8 

IO 0.9512 8 
IO 0.9604 IO 

II 0.9795 II 
I7 0.9930 IS 
21 0.9956 20 
25 0.9974 27 
25 0.9973 20 
32 0.999 I 32 

non-linear temperature behaviour from the regen- 
erator entrances, consequent upon the constant inlet 
gas temperatures. as the period length, n becomes 
larger. We would expect larger economies to be poss- 
ible for even larger values of II. The large values of 
reduced length, A, which we have been able to handle 
using the linearly independent functions defined by 
equation (IO) is shown in this table. This matter is 
discussed later (see Table 2). 

5. BREAKDOWN OF THE METHOD OF ILIFFE [I] 

Iliffe employed the quadrature method to solve 
equations (l)-(3). He approximated the integral by 
Simpson’s rule. The temperatures F(t) are computed, 
in his method, at positions (6 = jA<jj = 0, I, 2, , N} 
where NAt = A. It is convenient to denote F({,) 
by F, while F’, is defined in a similar manner for the 
cold period. It follows that 

s !+A; 
K(t-c)F(e)dc: = &+ (.,,J_,F, (13) 

0 ,= I, 

where K,-, = K((k-j)A<) and the c,,~ are the 
coefficients in Simpson’s rule. For k even, this takes 
the form 

s !,A< I 
” 

K(c-E)F(E)dE = %{K~F~+~K’- ,F, 

+2Kkm2F2+ ... +4K,F,-,+K,F,}. (14) 

Fork odd, we split the integral 

I kA.i s IA5 
K(t--E)F(E) d.z = K(t-E)F(E) ds 

II 0 

s kA; + K(t-c)F(c)dE (15) 
,A; 

and approximate the first integral by Simpson’s three 
eighths rule and the second integral by Simpson’s rule, 
as in equation (14). The three eighths rule takes the 
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form 

s 

lA, 
K(<--E)F(E) ds 

” 

3A< 
= <m {K,F,+3KzF,+3K,FztKoF,). 

For/i = I, we propose to use, hem. the trapezium rule 

s Ai 
K(5-&)RF)dE=~~:K,F”+KDF,/ (16) II 

whereas, more correctly, Iliffc estimated F, ? by 
interpolation using F,,, F,, F2, F, and then found the 
integral ( 16) by Simpson’s rule again. 

We construct the (0 N) x (0 N) matrices P. 
Qand R 

1 0 

KIP K,,P 
K,/3 4K,/3 Kc,/3 

P= A< 3KJ8 9K,/8 9K,/8 
K,/3 4K,/3 ZK,/3 

I ... ... “’ 

L K,v/3 4K,,c ,/3 2K,,r- J3 
1 

3Kol8 
4K, I3 Kc,/3 

. 

4K,/3 K,/3 1 

(17) 

where N is even, for example, Q = em “I where I is the 
unit matrix and R = [K,,,] with I’ ,,,, ,. , = I for .i = 0, I, 
2, . N, and all other elements of R equal to zero. 
Upon application of equation (13) in equation (I) at 
positions X- = 0, I, 2, . , N, the matrix equation (18) 
is formed. 

(P+Q+ R)F = e (18) 

Figure I shows the variation of the kernel function 

K(h-5) 

FIG. I Variation of the kernel K(A - 5) with 5 for A = 30. 

with < and we see immediately that K, is very small 
for large s. large A and small II. As a consequence. in 
these circumstances. many effectively zero elements 
are introduced into the bottom rows of the matrix P. 
One way of looking at this is to say that, unless N is 
large, an insufficient number of large enough elements 
involving K, with small s will be introduced into the 
bottom rows of the matrix P causing the matrix 
P+Q+ R to approach a singular state This effect 
was observed by Willmott and Thomas [7] and was 
described in detail by them. 

Another way of looking at the same problem is to 
say that it is difficult to evaluate the integral (13) for 
larger values of k, if the majority of the data points 
involve values of Kk , which are very small and unrep- 
resentative of K(s) over the complete range of .v under 
consideration. 

This is the basic flaw in the method of Iliffe which 
makes its application difficult for large reduced length. 
A and small reduced period. ll (the so-called lorrg 
rqrneru/or prohlc>,rr). unless an unacceptably large 
number N of simultaneous equations ( 18) is used. 

6. ROBUSTNESS OF THE SERIES EXPANSION 
METHODS 

The weakness of the lliffc method stems from the 
shape of the kernel, K(s), for large A and small II. 
This difficulty is overcome in the scrics expansion 
methods since the coefficients of the r, in equation (8) 
involve itr/egrals of K(c,--E) 4,(s) instead of the point 
values K,-, used in the Iliffc method. Very small 
elements will not, therefore, be introduced into the 
relevant matrices. Baclic [ 121 offers analytical means 
of finding these integrals although they can also be 
found by Gaussian quadrature. It is this use of inte- 
grals in the construction of the coefficients of r, in 
equation (8) and hence in the elements u,,, in equation 
(9) that provides the robustness of the series cxpan- 
sion method in this cast. Even if the integrals are 
evaluated numerically, the more accurate methods of 
Gaussian quadrature can be employed. These are also 
more economical than the NewtonCotes techniques 
which are unavoidable within the quadrature methods. 
such as that of Iliffe. 

In this paper, we concentrate on the method of 
collocation to find the vectors o! and /?. However, the 
same observations apply if a and fi arc determined by 
the Galerkin method, as described by Baclic [ 121. The 
robustness of this method and that of the collocation 
method have the same origin. By way of a dem- 
onstration of this robustness, we have successfully 
computed the temperature performance of regen- 
erators with reduced lengths in the range 

for A/IT equal to SO,20 and IO. In doing so, we have 
used the linearly independent functions defined by 
equation (IO) and the Chebyshev data points. These 
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results are shown in Table 2. Without loss of gener- 
ality, these relate to the symmetric case. 

The thermal regenerator problem is somewhat 
unusual. therefore, since in general. the Newton- 
Cotes methods are more often used in the solution of 
integral equations, since. as Baker [5] points out. they 
are generally easier to implement than an expansion 
method. 

7. LIMITATION TO THE COLLOCATION 
METHOD 

Although the resitlualjimction R(t) is a non-linear 
function of the series expansion (6) it resembles the 
interpolation function which is a polynomial. in that 
itisR(<)=Oat{<,]i=O, I,2 . . . . . n).Thismeans 
that using the Chebyshev expansion (IO) can do little 
more than provide an economixtion or t&scoping 
(see p. 425 of Atkinson [l5]) of a solution provided 
by using &(t) = <“/k! This matter is also discussed 
by Fox and Parker [ 181. 

It is for this reason that attention should be directed 
to the Galerkin method. It is suggested here that use 
of expansion (6) or simply &(<) = 7’,(2</A-I) is 
likely, hopefully, to yield a compact solution to equa- 
tion (I) or equations (2) and (3), exploiting the sort 
of economy afforded by Chebyshev series in the least 
squares approximation of functions. Such a technique 
is described by Delves and Mohamed [6] and is called 
the Fust G&rkin Alyoritht~~. The key problem is 
that in the Galerkin method. we seek to approximate 
Q(F(<)). not by a Chebyshev series but by a function 
R of a Chebyshev series. as in equation (12) with 
4,(c) = 7-,(?</A- I). Choice of the relevant weight- 
ing function, however. enables the orthogonality of 
the Chebyshev functions to be exploited. 

It is suggested that, as far as the collocation 
methods discussed in this paper are concerned, advan- 
tage can be taken of what economies are available by 
employing the Chebyshev functions defined by equa- 
tion (6) and by using the Chebyshev data points in 
calculating the vectors LZ and /I. 

8. THE NON-SYMMETRIC CASE 

The problems of economy in the series expansions 
and of stability discussed earlier apply to the sym- 
metric and non-symmetric cases. No loss of generality 
has arisen, therefore, in discussing these matters in 
the context of equation (I). The observations and 
conclusions drawn apply equally to equations (2) and 
(3). 

A computational problem arises in the non-sym- 
metric case in addition, however. Solution of equation 
(9) involves the solution of n+ I simultaneous equa- 
tions. The conventional approach to equations (2) 
and (3) involve the solution of2nf2 equations, where 
the solution vector is a concatination of the vectors a 
and fi, defined by equations (6) and (7). Nahavandi 
and Weinstein [lo] adapted such an approach for the 

collocation method as did Baclic and Dragutinovic 
[ 191 in their development of the Galerkin approach to 
these integral equations. This doubling of the number 
of equation results in the computational effort being 
multiplied by approximately eight. This problem can 
be resolved using the matrix method set out below. 

9. THE MATRIX METHOD 

Equation (2) can be re-written for the cold period 
in the pth cycle 

A’ 
,X”‘(<‘) = ,-rl’F’P’((‘)+ 

1. 
K’(E-<‘)F”“(E) ds. 

b 

(19) 

Inserting expansions (6) and (7) and denoting the 
vectors for the pth cycle by a”” and j?‘“’ yields 

A’ + 1. K’(E-<‘)q5,(~) ds (20) 
5 I 

Application of equation (20) at distinct positions 
(t’, ] i = 0, I, 2. ., n) yields a matrix equation, 
namely 

(D’p”’ = yalP’ (21) 

where 0 and F’ are (0 n) x (0 . n) matrices. 
These are defined by @’ = [4,(c:)] and 

I-’ = [ec”Q,(~~)+ 6: K’(i;:)$,(r)dc]. 

The vector /V” can be computed from alp) using 

/j’“’ = (Jp 1 r’s(P), (22) 

Equation (3) for the hot period in the pth cycle is 
developed in a similar manner. It is somewhat re- 
arranged to yield 

F’““‘(t) = e-“F”“(<)+ 

+ {f-e~~n-~K(<-.s)dc). (23) 

Substituting again expansions (6) and (7) this time 
into equation (23) generates 

i aY+ “4,(t) 
j= 0 

Application of equation (24) at distinct data points 
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(5, Ii=O,1.2 ,..., II) produces an equation in matrix 
form which is 

Qa’/‘+ 1) = rp? + ( 

where Q, = [+,(<,)I and 

(25) 

The vector 5 = [ill, i,. iz, . , [,,I’ is defined by 

(,= {1-en-j;K(;,-s)dc}. (26) 

Equation (25) can now be re-arranged to give 

a(P+I) = @,- lr/yP’+Q-‘<, (27) 

Equation (28) is obtained by the substitution for /I”” 
from equation (22) ; it takes the form 

alP+Il = @- lpp-‘r’a”“+@-l~, (25) 

If 0, ‘I-@,‘- ‘I’ is denoted by M and CD ‘5 by v. then 
equation (28) becomes 

aw+ ‘) = Mat”” +v, (29) 

At cyclic equilibrium, P = a”‘+ ” = a in which case, 
rquation (29) takes the form 

(I- M)a = v 

and the vector a located by solving the set of /t+ I 
linear equations. namely 

a = (I-M)- ‘v. (30) 

Once a has been found. the vector /I is obtained from 

fi = a’- ‘r’a. (31) 

Equation (30) involves the solution of only jr+ I 
instead of 2n+2 equations. The calculation of the 
vector /J requires only a matrix multiplication. It is 
necessary, however, to find the matrices @-‘I- and 
@‘-‘I’ together with the vector Q- ‘[. This can be 
realised economically by performing single LU 
decompositions of @ and a’, each equivalent in com- 
putational effort, to solving rzf 1 linear equations. 
The matrices CD- ‘I’ and a,‘- ‘I’ and the vector (I- ‘c 
are then found by the conventional forward and back 
substitution processes. A further economy can be 
made if the same data points 5, are used for the col- 
location scheme in the hot and cold periods, in which 
case CD’ = 0. 

The procedure described above represents a devel- 
opment of the matrix approach to regenerator simu- 
lations suggested recently by Willmott et ul. [20] 
applied initially to the Iliffe method for solving equa- 
tions (2) and (3). The same economies can be realised 
for the method of Galerkin. In this case, the matrices 
@’ and T’ for equation (21) take the forms 

f#lf= 4j(t’)4i(t’) dt’ 1 (32) 

A I-’ = FS { em n 9,(T) I, 
‘2 + s F+-<‘@,(E) dc G,(<‘) d<’ (33) 

; 1 1 _I 

The matrix @’ assumes diagonal form if the functions 
Cp,(<‘) are orthogonal. The matrices @ and I. and the 
vector 5 for the hot period can be developed in a 
similar manner. This approach extends the work of 
Baclic [ 121 in which the Galerkin method for equation 
(I) is described, together with the later work of Baclic 
and Drdgutinovic [I91 which encompasses the non- 
symmetric problem. Details of this development and 
the application of the Fast Galerkin Algorithm will 
be described in a future paper. 

10. CONCLUDING REMARKS 

The series expansion methods for the Nusselt inte- 
gral equations (l)-(3) are shown to be robust. They 
should be used in preference to the computationally 
more economical Iliffe quadrature scheme if it is at 
all likely that software implementing a method of solu- 
tion of the integral equations will be called upon to 
handle cases of the Iort,y reqmwmr problem. It is 
suggested that the linearly independent functions 
defined by equation (IO) be employed since the func- 
tion values lie on the same [0, I] range occupied by 
the dimensionless temperatures F(c) and F’(<‘). 

Advantage should be taken of the matrix scheme 
described here for the non-symmetric case since the 
number of equations required to be solved is halved. 
For collocation schemes, the Chebyshev data points 
should be employed for both the symmetric and non- 
symmetric cases. The same Chebyshev data points 
should be used for the hot and cold periods for the 
non-symmetric case so that computational advantage 
can be taken of the relation 0’ = CD. 
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